Mapping malaria transmission in West and Central Africa

Armin Gemperli1, Nafomon Sogoba1,2, Etienne Fondjo3, Musawenkosi Mabaso1,4, Magaran Bagayoko5, Olivier J. T. Briët1,6, Dan Anderegg1, Jens Liebe7, Tom Smith1 and Penelope Vounatsou1

1 Swiss Tropical Institute, Basel, Switzerland
2 Malaria Research and Training Center, Faculté de Médecine de Pharmacie et d’Otonto-Stomatologie, Université de Bamako, Bamako, Mali
3 Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
4 Malaria Research Programme, Medical Research Council of South Africa, Durban, South Africa
5 World Health Organization Regional Office for Africa, Libreville, Gabon
6 International Water Management Institute, Colombo, Sri Lanka
7 Biological & Environmental Engineering, Cornell University, Ithaca, NY, USA

Summary

We have produced maps of Plasmodium falciparum malaria transmission in West and Central Africa using the Mapping Malaria Risk in Africa (MARA) database comprising all malaria prevalence surveys in these regions that could be geolocated. The 1846 malaria surveys analysed were carried out during different seasons, and were reported using different age groupings of the human population. To allow comparison between these, we used the Garki malaria transmission model to convert the malaria prevalence data at each of the 976 locations sampled to a single estimate of transmission intensity E, making use of a seasonality model based on Normalized Difference Vegetation Index (NDVI), temperature and rainfall data. We fitted a Bayesian geostatistical model to E using further environmental covariates and applied Bayesian kriging to obtain smooth maps of E and hence of age-specific prevalence. The product is the first detailed empirical map of variations in malaria transmission intensity that includes Central Africa. It has been validated by expert opinion and in general confirms known patterns of malaria transmission, providing a baseline against which interventions such as insecticide-treated nets programmes and trends in drug resistance can be evaluated. There is considerable geographical variation in the precision of the model estimates and, in some parts of West Africa, the predictions differ substantially from those of other risk maps. The consequent uncertainties indicate zones where further survey data are needed most urgently. Malaria risk maps based on compilations of heterogeneous survey data are highly sensitive to the analytical methodology.

keywords entomological inoculation rate, kriging, malaria, markov chain monte carlo, parasite prevalence, vectorial capacity

Introduction

Malaria is a major public health problem in sub-Saharan Africa. The risk of infection has been linked to patterns of morbidity and mortality caused by Plasmodium falciparum which varies widely across the continent (Snow et al. 1998). Accurate risk maps, describing this variation, have long been recognized as important tools for planning malaria prevention and control, and for estimation of disease burden. A number of malaria distribution maps are available for Africa based on climatic and other environmental predictors of malaria transmission (Craig et al. 1999; Snow et al. 1999; Rogers et al. 2002); however, they make little or no use of the data from field surveys of malaria prevalence, which form the largest body of relevant information. Reliable empirical maps of the geographical distribution of malaria are urgently needed for accurate estimation of disease burden, to identify geographical areas which should be prioritized in terms of resource allocations and for assessing the progress of intervention programmes.

The Mapping Malaria Risk in Africa (MARA) project is a collaborative network of key African scientists and institutions with the aim of providing empirical risk maps of malaria in Africa (Snow et al. 1996). Initially, this involved the development of continent-wide climate-based theoretical models of climatic suitability (Craig et al. 1999) and the collection of parasite prevalence data to
validate and/or improve these models. The availability of new remote sensing (RS) data sources, computerized geographic information systems (GIS) and geostatistical methods have provided unprecedented information and capacity for development of malaria risk maps (Hay et al. 2000; Kitron 2000; Thomson & Connor 2000; Bergquist 2001; Diggle et al. 2002; Gemperli 2003). Subsequently, several empirical risk maps have been produced using a combination of the environmental and malaria data collected as part of the MARA project at both country and regional level in Kenya and West Africa (Omumbo et al. 1998; Snow et al. 1998; Kleinschmidt et al. 2000, 2001; Gemperli et al. 2006), in each case, using the mapping exercise to further develop methodology for empirical mapping of malaria.

These maps make use of both the prevalence data and relevant environmental data obtained from RS and GIS databases. However, there are a number of limitations. In particular, compilations of prevalence data comprise survey results from different seasons with non-standardized and overlapping age groups of the population. This makes it difficult to allow for seasonality and the age dependence of the malaria prevalence (Gemperli et al. 2006). Most analyses of MARA data have chosen a target age group and discarded data for other age groups and for sites where data for the target age group were not available. This usually results in wasting large amounts of data and thus weakening estimates of malaria transmission for some geographical regions with sparse data.

Mathematical models of malaria transmission provide an approach for converting a set of heterogeneous entomological indices onto a common scale for mapping purposes. For instance, the Garki model (Dietz et al. 1974) is a dynamic compartment model which considers basic characteristics of immunity to malaria and the dynamics of the interactions among humans, mosquitoes and malaria. Given entomological measures of transmission intensity as input, the model predicts age-specific prevalence. Conversely, it can be used to predict transmission from age-specific prevalence (Hagmann et al. 2003). Gemperli et al. (2006) have used this model to convert the MARA prevalence data from Mali to a measure of entomological inoculation rates which in turn could be used for mapping purposes. However, that analysis treated malaria transmission as constant throughout the year; this leads to biases in the estimation of transmission rates as the length of transmission season varies between locations.

In this paper, we further analyse the West African parasite prevalence data including Central Africa using new methods. We produced age-specific maps of malaria risk maps using an extension of the approach of Gemperli et al. (2006) that allows for the seasonality in malaria transmission between locations. We based our estimates of seasonality on a seasonality map produced using temperature, rainfall and the Normalized Difference Vegetation Index (NDVI), based on an augmented version of the model of Tanser et al. (2000). Using both this seasonality map and the Garki model, we estimated the transmission intensity (E) for each location from the age-specific malaria prevalence values. We fitted a Bayesian geostatistical model on the E using a number of environmental and ecological variables as covariates obtained from RS and GIS. We then produced smooth maps of E for the whole of West and Central Africa using Bayesian kriging. Finally, we back-transformed this map to maps of age-specific malaria prevalence by re-applying the Garki model.

Materials and methods

Datasets

Malaria data

The malaria prevalence data were extracted from the version of the Mapping Malaria Risk in Africa (MARA/ARMA) database available in mid-2002. In addition, we included 2760 datapoints which were extracted by literature search in MEDLINE. The augmented database contained 7738 age-specific prevalences for West and Central Africa, collected during 2371 surveys, carried out at 1220 distinct locations. In this analysis, we included only those surveys conducted in rural regions after the year 1950 and discarded data sampled at locations where we estimated no transmission throughout the year. The final data set we analysed was collected at 976 distinct locations over 1846 surveys and comprised 294 different (overlapping) age categories (Figure 1).

Climatic, environmental and population data

The temperature and rainfall data were obtained from the ‘Topographic and Climate Data Base for Africa (1920–1980)’ Version 1.1 by Hutchinson et al. (1996). It is based on data collected by various research agencies at 1499 stations for temperature and at 6051 stations for rainfall, between 1920 and 1980. These measures have been averaged into monthly values for locations where data have been collected for at least 5 years. Spatially predicted values were then derived for a 0.05-degree spatial grid by applying a thin-plate smoothing spline interpolation (Hutchinson 1991).

Normalized Difference Vegetation Index extracted from National Oceanic and Atmospheric Administration and National Aeronautics and Space Administration (NOAA/NASA) satellite data (Agbu & James 1994) were used as a proxy of vegetation and soil wetness (Justice et al. 1985).
In order to reduce distortion effects caused by clouds and atmospheric interference, the maximum value composites for every month were considered. Monthly NDVI values for each location were derived by averaging the maximum monthly values for the 11-year period from 1985 to 1995. In addition, monthly estimates of the Soil Water Storage Index (SWS) which describes the amount of water that is stored in the soil within the plant’s root zone were obtained using the procedure given by Droogers et al. (2001).

Land use was classified using the land use/land cover database which is maintained by the United States Geological Survey and the NASA’s Distributed Active Archive Center. We chose the 24-category classification scheme described by Anderson et al. (1979) and regrouped them into six broad categories (water, very low transmission, under-average transmission, average transmission, higher-than-average transmission and high transmission), using knowledge of the vector abundance in the different land use types. Subsequently, the proportions of the six classes of land use were calculated for buffer areas around the actual locations. The size of the buffers were calculated by fitting models on the logarithmic-transformed \(E \) values with various buffer sizes as predictors. It was found that the best fitted model was achieved with a buffer of \(20 \times 20 \) km.

Permanent rivers and lakes were extracted from the ‘African Data Sampler’ (World Resources Institute 1995) and the nearest Euclidean distances of points on a grid of 1-km resolution were calculated using the Idrisi software (Clark Labs, Clark University). In addition to the distance-to-water, we estimated a content-of-water effect by calculating the proportion of water contained in a buffered area of \(20 \times 20 \) km.

Furthermore, the whole of West and Central Africa was divided into four agro-ecological zones (AEZ) which were determined as a function of precipitation, evaporation and availability of water stored in the ground, according to the procedure described in FAO (1978).

For those environmental factors where monthly values could be assigned (the minimum and maximum temperature, rainfall, the NDVI and the SWS), summary statistics were calculated at each location for those months predicted by the seasonality model as being suitable for malaria transmission. The summary statistics computed were the total, the mean and the coefficient of variation.

Population density data were derived from the ‘African Population Database’ (Deichman 1996) and correspond to the number of persons at a resolution of \(3.7 \times 4.8 \) km\(^2\).

An overview on the databases used in the analysis is provided in Table 1.

Seasonality model

The seasonality map of malaria transmission (Figure 2) is an amended version of that of Tanser et al. (2003). Tanser’s original map makes use only of temperature and rainfall data to define suitability. In order to ensure that irrigated areas of low rainfall were classified as suitable for transmission, we defined a region and month as suitable for stable malaria transmission either when it met the criteria set by Tanser et al. (2003), or those excluding the rainfall of 60 mm criterion but if the NDVI values were higher than 0.35 (Hay et al. 1998). For each location and month, we calculated (1) the moving average over the current and the previous 2 months of the mean of minimum and maximum temperature, (2) the moving average of the...
monthly temperatures of the current and previous
2 months, and (3) the NDVI value of the previous month.
In addition, we calculated the minimum and maximum
annual temperatures for each location. These criteria are
presented in Table 2.

Malaria transmission model

For each location, the raw MARA/ARMA prevalence data
were converted to estimates of malaria transmission
intensity \(E \) by fitting the Garki model (Dietz et al. 1974)
using a maximum likelihood approach (see Appendix). The
Garki model is a dynamic compartmental model adjusted
to field data from northern Nigeria. It translates the age
dependence in the association between malaria transmis-
sion and malaria prevalence into a set of curves. Each curve
corresponds to a specific age and length of transmission
season. Given entomological measures of transmission
intensity, the model predicts age-specific prevalence. Con-
versely, it can be used to predict transmission from age-
specific prevalence. \(E \) is a measure of the entomological
inoculation rate but is not equivalent to the one calculated
from entomological data because the prevalence curve has
an upper bound and observed prevalences above this
bound are subject to error when converted to entomolo-
gical inoculation rates. The standard error of the \(E \) point
estimates were obtained by numerically calculating the
Fisher’s information.

Geostatistical model

A Bayesian linear geostatistical model was fitted on the
\(E \) values taking into account a number of environmental
predictors. In particular, the logarithm of the point
estimate of \(E \) was assumed to be normally distributed, with
mean being a nonlinear function of the covariates. Before
fitting the spatial model, a number of possible predictors of
\(E \) such as NDVI, rainfall, minimum/maximum temperature,
SWS, distance from nearest water source, population density, proportion of surface water, agro-ecological zone, year of survey and length of transmission season were screened univariately to select those which were statistically significantly related to \(E \). Some of these covariates were used earlier in spatial malaria risk models by Thomson et al. (1999), Kleinschmidt et al. (2000, 2001) and Diggle et al. (2002); however, the proportion of surface water, land-use class, SWS and the climatic suitability indicator were not considered in previous models.

We fitted various non-spatial models to identify the best subset of predictors and their best (possibly nonlinear) functional form based on the bias-corrected Akaike’s information criterion (Harvich & Tsai 1989), which was used to assess model fit. The functional forms of predictors which we screened include polynomials up to second order, first-order interaction terms, logarithmic, inverse and exponential forms with different parameterizations. Only one parameter was found to enter the best model nonlinearly. For ease of application, this parameter was fixed at its optimal estimate to obtain a purely linear model. This non-spatial analysis of the \(E \) value was carried out using the SAS System (SAS Institute, Cary, NC).

In the Bayesian geostatistical model, the spatial dependency among the log-\(E \) values \(Y_j \) for locations \(j = 1 \ldots m \) was modelled using the exponential correlation function

\[
\text{cov}(Y_j, Y_k) = \sigma^2 \exp \left(-\frac{d_{jk}}{\rho} \right) \quad \text{for} \quad j \neq k
\]

and

\[
\text{var}(Y_j) = \sigma^2 + \tau^2 / \omega_j,
\]

where \(d_{jk} \) is the Euclidean distance between the locations of observation \(Y_j \) and \(Y_k \), \(\omega_j \) is a weight introduced to account for uncertainty in estimates derived from the Garki model and equal to the reciprocal of the variance of the estimated log \(E \). The parameter \(\sigma^2 \) captures the variation attributable to spatial dependency and \(\tau^2 \) the remaining variation. The decay of spatial variation as a function of the distance between sample points is expressed by the parameter \(\rho \). Markov chain Monte Carlo was applied for model fitting. Bayesian kriging was employed to produce a smooth map of the \(E \) in West and Central Africa. The software used for fitting the Bayesian models was written by the authors in Fortran 95 (Compaq Visual Fortran v6.6) using standard numerical libraries [The Numerical Algorithms Group (NAG) Ltd.]. The smoothed \(E \) map was back-transformed to age-specific maps of malaria risk in children using the Garki model. Details on the spatial Bayesian model and kriging are given in the Appendix.

Results

The univariate non-spatial analysis indicated that among environmental factors the year of survey, NDVI, distance from water, length of season, rainfall, SWS, agro-ecological zone, and minimum and maximum temperature were related to \(E \). As described above, temporal variables such as NDVI, rainfall and temperature, whose values change from month to month, were summarized for each location by annual total, mean and coefficient of variation (CV) over the months with stable transmission during the year. Univariate analysis revealed that the mean leads to a better model fit than the total and the CV. No statistically significant univariate association was found between the logarithm of \(E \) and either the land use or population density.

The best fitting model included NDVI and length of season on a logarithmic scale. The distance to water entered the model scaled as an exponential function. The scaling factor was chosen to optimize model fit. The association with rainfall was best described by a reciprocal transformation. The parameter estimates obtained after

Table 2: Criteria for suitability of stable *P. falciparum* malaria transmission

<table>
<thead>
<tr>
<th>Description</th>
<th>Climatic effect</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frost</td>
<td>Minimum annual temperature</td>
<td>5 °C</td>
</tr>
<tr>
<td>Vector survival</td>
<td>Mean monthly temperature*</td>
<td>19.5 °C + annual standard deviation</td>
</tr>
<tr>
<td>Catalyst month</td>
<td>Annual maximum rainfall</td>
<td>>80 mm</td>
</tr>
<tr>
<td>Availability of breeding sites</td>
<td>NDVI or rainfall†</td>
<td>>0.35 or >60 mm</td>
</tr>
</tbody>
</table>

A month is suitable for transmission when all rules are fulfilled for the current month or for the immediate preceding and following months. The table extends the seasonality model by Tanser et al. (2003) by including the NDVI effect.

*Average of minimum and maximum temperature. Moving average from two previous months and the current one.
†NDVI value from preceding month.
‡Moving average from two previous months and the current one.
fitted the spatial Bayesian model are presented in Table 3. The results indicate a 0.3% increase in E every year. Rainfall was also associated with transmission. The minimum temperature, agro-ecological zone and the SWS index were not retained in the multivariate model.

The interactions in the model capture the differences in the effects of environmental factors on E in the climatic zones. Some of these interactions which were estimated by the model are graphically depicted in Figures 3, 4 and 5. The higher the NDVI values, the higher the transmission except at locations far away from water and with perennial (long) malaria transmission (Figure 4). The distance to water is negatively associated with transmission for regions with high NDVI above 0.6 (Figures 3 and 4). Malaria transmission increases as the maximum monthly temperature increases. It reaches a peak at around 32 degrees celsius and then it reduces with higher temperatures (Figure 5). The above association is not statistically significantly associated with the length of transmission season (Table 3), in a spatially adjusted model, but the length of transmission season has a significant negative association with log E in interaction with the NDVI.

Table 3 Parameter estimates for the environmental covariates.

A spatial linear model has been fitted on log(E) and the parameters have been back-transformed to ratios of E.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Median</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>1.003</td>
<td>1.0004–1.006</td>
</tr>
<tr>
<td>log(NDVI)* × water proximity†</td>
<td>8.220</td>
<td>1.500–45.65</td>
</tr>
<tr>
<td>Water proximity†</td>
<td>0.417</td>
<td>0.228–0.757</td>
</tr>
<tr>
<td>log(length of season)‡ × log(NDVI)*</td>
<td>0.683</td>
<td>0.471–0.985</td>
</tr>
<tr>
<td>1/Rainfall§</td>
<td>1.208</td>
<td>1.018–1.436</td>
</tr>
<tr>
<td>Maximum temperature§</td>
<td>0.246</td>
<td>0.092–0.606</td>
</tr>
<tr>
<td>log(length of season)‡</td>
<td>0.474</td>
<td>0.097–2.065</td>
</tr>
<tr>
<td>Maximum temperature§ × log (length of season)‡</td>
<td>0.977</td>
<td>0.929–1.023</td>
</tr>
<tr>
<td>(Maximum temperature§)2</td>
<td>0.998</td>
<td>0.996–0.999</td>
</tr>
<tr>
<td>τ^2</td>
<td>41.98</td>
<td>38.48–47.80</td>
</tr>
<tr>
<td>σ^2</td>
<td>0.398</td>
<td>0.310–0.495</td>
</tr>
<tr>
<td>ρ^{**}</td>
<td>29.37</td>
<td>15.55–47.24</td>
</tr>
</tbody>
</table>

*The NDVI is increased by one, prior to taking the logarithm.
† Water proximity = exp(−distance to the closest water body in metres/1500).
‡ Length of season in months.
§ Rainfall in centimetres.
** With respect to distance in kilometres.

The predictors NDVI, rainfall and maximum temperature are the annual mean-values over those months estimated to be suitable for stable malaria transmission.

Figure 3 Effect of NDVI and distance to water on E for a season of 2 months malaria transmission per year as estimated by the spatial Bayesian model.

Figure 4 Effect of NDVI and distance to water on E with perennial malaria transmission as estimated by the spatial Bayesian model.

The spatial correlation present in the data is measured by the parameter ρ which corresponds to the minimum distance between locations which have a correlation below 5%. This distance is estimated to be 88 km (95% confidence interval: 47–142 km). This large value probably arises because of large-scale spatial effects caused by unobserved ecological factors. The spatial correlation for
locations 3 km apart (mosquito flight range) is 90% and decreases to 82% for locations 6 km apart. The spatial variation is very small ($\sigma^2 = 0.398$) compared with the residual non-spatial variation ($\tau^2 = 41.98$).

We were not able to fit the Garki model to data for locations where there is no single month of stable malaria transmission. In our data, we had 42 such locations in southern-Sahara regions, mainly in Mauritania. The 69 surveys carried out at these locations were omitted from the analysis, which implicitly assumes that malaria is epidemic at these locations. The raw prevalence at six of these locations was zero and at 28 of these it was low (below 0.1). The recorded prevalence at 12 of these locations was between 0.1 and 0.25, and two sites in southern Mauritania close to the river Sénégal had prevalence values of 0.39 and 0.58, respectively.

The map of spatially predicted E values was converted to age-specific prevalence maps using the relationships assumed in the Garki model. The association between the malaria prevalence and the transmission intensity for different lengths of transmission season and for two age groups (<5 years and 1–10 years old) is shown in Figure 8. At high levels of transmission, children <5 years old tend to be at higher risk than children 1–10 years old. The opposite is observed at areas of lower transmission. In addition, as the length of transmission season increases the prevalence increases for areas with the same estimate of E.

The map of log-E for West and Central Africa (Figure 6) shows high transmission for most of sub-Saharan West Africa. The lowest transmission in that part of the continent was observed in north-western Ivory Coast, the province of Sissili and most of the east part of the Poni province in Burkina Faso, the south-east region of Borgon in Benin, south and central-east Cameroon and the north of the Plateau region of Nigeria. Additionally, there are large areas along the Atlantic Ocean estimated to have relatively low malaria transmission, such as the northern part of Senegal, Guinea, Liberia and the region around Abidjan in Ivory Coast. Central Africa is estimated to have a relatively low level of malaria transmission with few focal regions of high transmission around Bambari and Bossangoa (Central African Republic), south Gabon, southern Republic of Congo and a few nodes in the Democratic Republic of Congo (Yamfu-Nunga, Dilolo, Kamina, Lubumbashi, Kabalo). A discussion of these figures must consider their precision, expressed by the variance in prediction (Figure 7).

The maps of malaria prevalence for the two age groups are shown in Figures 9 and 10. A band of relatively high

![Figure 5](image-url) Effect of maximum monthly temperature (in degree Celsius) on E, as estimated by the spatial Bayesian model. Short season corresponds to 2 months malaria transmission per year. Long season indicates perennial transmission.

![Figure 6](image-url) Predicted log(E) (median) for West and Central Africa. Sampling locations are shown by circles.
malaria prevalence was predicted for the West African Sudan-savannah zone, including the northern Guinea savannah (see Kleinschmidt et al. 2001, for the definition of the zonation). Some larger regions of relatively low levels of prevalence were estimated in the forest zone and in most of Central Africa. Exceptions of high prevalence in the forest zone are found in the south of Ghana, Togo, Benin and Nigeria on a coastal strip between Accra and Lagos, and for south Guinea at the border of Liberia.

The two prevalence maps for the different age groups show only slight differences in the spatial distribution of prevalence, but for children aged 1–10 years the prevalence is estimated uniformly remarkably higher than that for children under 5 years old.

A comparison of observed and predicted prevalence revealed that predicted values include less extreme risks than obtained in the surveys. The mean difference between the field data and the model-based predicted prevalence for children under 5 years old at the 224 locations where this information was available is 0.13 (standard deviation 0.24) with prevalence from field data being larger. For the 343 locations with information on 1 to 10 years old children this difference is 0.12 (standard deviation 0.25).

Discussion

In this study, the Garki model was employed in a novel way to convert malaria prevalence data extracted from the MARA database to malaria transmission intensity for each survey location. In our recent study (Gemperli et al. 2006), we used the Garki model to draw maps of malaria transmission and prevalence for Mali. However, we did not consider the seasonality in malaria transmission and assumed that transmission season was the same at all locations. We have now employed a modified approach which takes into account the length of transmission season at each location and thus the seasonality in the association between transmission intensity and age prevalence curves. Our model requires as inputs the length of transmission season for each location which was calculated by a modified version of the seasonality map of Tanser et al. (2003). A Bayesian variogram model was applied on the malaria estimates to obtain smooth maps of malaria transmission intensity for West and Central Africa adjusted for environmental covariates which were obtained from RS.
Seasonality in transmission is an important, but neglected, consideration in malaria mapping, both because the season at which the data were collected may be important, and because the malaria maps themselves may be season-specific. At very high transmission levels, malaria prevalence is generally not very seasonal (Smith et al. 1993), but at low transmission levels, surveys carried out in the dry season generally have much lower prevalence than wet season surveys. Many surveys are deliberately carried out during the peak transmission season, and this introduces a bias in the maps unless it is allowed for. Seasonality also affects the relationship between prevalence and inoculation rates, because when many inoculations occur over a short period of time the proportion resulting in erythrocytic infections is reduced (Beier et al. 1994; Charlwood et al. 1998). The Garki model adjusts automatically for this effect when a seasonal input of vectorial capacity is assumed. However, it would have been preferable to use a seasonality model that predicted quantitative variation in transmission between months, rather than simply classifying them into months of transmission/no transmission. Moreover, there is a clear need for empirical maps of seasonality based on fitting models to local data on seasonality of either entomological or clinical indices. Despite our attempt to augment the seasonality map using NDVI data, it has clearly failed to correctly assign areas of endemic transmission in southern Mauritania, and probably also in other areas where rivers flow north into dry zones.
The Garki model enabled us to convert malaria prevalence data collected from surveys from non-standardized age categories of the population to an age-independent transmission measure. Previous mapping efforts attempted to overcome the problem of age-adjustment by discarding inappropriate age-groups. This resulted in a vast waste of available malaria data. The model could then be further applied to obtain age-specific prevalence. The mapping of outputs of malaria transmission models provides a general framework to derive malaria prevalence estimates for any desired age-group. It can be also used to derive other measures of transmission, different from the E, which are not measured in the field. However, the Garki model was developed on field data from the savannah zone of Nigeria (Molineaux & Gramiccia 1980). It needs to be verified how accurately it can be adapted for other regions in West and Central Africa, with different environmental conditions and malaria endemicity.

The Bayesian variogram modelling approach takes into account the spatial dependence present in the data in a flexible way. The method inherently calculates the standard error of the parameter estimates as well as the prediction error without relying on approximations or asymptotic results. Maps of the prediction error indicate the confidence we can have on the model predictions for the study area.

In a previous study to map malaria in West Africa, Kleinschmidt et al. (2001) modelled interactions between the environmental predictors and agro-ecological zones by a separate analysis for each ecological zone. The resulting map showed discontinuities around the borders of the zones, which were further smoothed. This additional step applied after kriging made inference on the prediction error unfeasible. To avoid the separation into geographical zones, we considered interaction amongst the environmental predictors which capture space-varying functional relationships between the predictors and malaria transmission. This approach produces no discontinuities and avoids arbitrary geographical partitioning. Our modelling approach goes further beyond that of Kleinschmidt et al. (2001), because we could include all survey information, irrespective of their age group, and the Bayesian model applied allowed correct adjustment for estimation uncertainty and prediction error.

A comparison of our estimated malaria prevalence maps with those produced by Kleinschmidt et al. (2001) for West Africa reveals similar patterns, but the predicted prevalence in our map shows fewer regions with prevalence above 70% or below 30%. Both maps identify the same areas with high malaria prevalence (border of Senegal-Mali-Guinea, north Ivory-Coast, Togo, north Nigeria, west Cameroon) and with lower malaria prevalence (Guinea-Bissau, south-east Burkina Faso, central Nigeria, and central-north and north Cameroon). There are discrepancies between the two maps in the region of central Nigeria which the map of Kleinschmidt et al. (2001) shows to be a high-risk area and in the border region between Burkina Faso and Mali and in south Guinea which was found to be a low-risk area by Kleinschmidt et al. (2001). Our map estimates a much lower malaria prevalence for the whole country of Ghana (with the exception of the coastal strip). The two areas, Central Ghana and Central Nigeria, where the two maps depict their largest differences are also the regions where the sampling density is relatively low (see Figure 1). More surveys in these two regions are needed to assess the quality of the maps and help to improve them. The models tend to underestimate high malaria risk as revealed by comparing the observed with the predicted prevalence data. This is because the prevalence curve obtained from the Garki transmission model has an upper bound so that it attributes observed prevalences above this bound to sampling variation. The introduced bias is large (0.13 for the <5-year olds; 0.12 for the 1–10-year olds) suggesting further refinement of the Garki model.

Surveys conducted in urban areas were omitted in our analysis. Thus, the produced maps may depict too high a malaria estimate for large urban areas (especially in Nigeria). In order to estimate the population at risk, based on our malaria risk map, a separate prevalence estimate for urban areas is required.

For low NDVI, an increase in malaria risk with increasing distance to water was estimated (Figures 3 and 4). Kleinschmidt et al. (2000) found the same effect in an analysis on malaria prevalence in Mali. In their work, the malaria risk was estimated to be reduced to a level lower than that measured close to water only for distances of more than 40 km away from the nearest water body. While vector abundance is supposed to be high closer to the breeding sites (Carter et al. 2000), the negative association between malaria infection and vector abundance is either attributed to the propensity of people to use bednets (Thomson et al. 1996) or the stimulated development of immunity during early childhood in high-risk areas (Thomas & Lindsay 2000).

The present analyses and maps demonstrate the feasibility of using transmission model-based estimates for mapping malaria risk across large areas of the African continent taking into account different patterns of seasonality. Further developments of this approach will require transmission models with a stronger empirical base. Realistic temporal components are needed in such models to allow for nonlinear trends in malaria risk and for space-time interactions. If spatial databases on control measures
become available, it will be possible to adjust for their effects in maps of malaria distribution, and also to visualize geographical patterns in the impact of future control programmes.

Acknowledgements

The authors would like to thank the NOAA/NASA Pathfinder AVHRR Land Project (University of Maryland) and the Distributed Active Archive Center (Code 902.2) at the Goddard Space Flight Center, Greenbelt, MD 20771 for the production and distribution of these data, respectively. The work of the first author was supported by Swiss National Science Foundation grants no. 3200-057165.99 and no. 3252B0-102136. This work is a product of the MARA/ARMA collaboration, and the authors would also like to acknowledge the contributions of the many field, laboratory and office workers who carried out the surveys and compiled the malariological database.

References

Appendix : models

Garki model

The Garki model (Dietz et al. 1974) is a mathematical model of malaria transmission which can be used to predict age-specific malaria prevalence as a function of the vectorial capacity C. C is defined as the number of potentially infective contacts induced by the mosquito population per infectious person per day. The Garki model describes transitions among seven categories of hosts distinguished by their infection and immunological status (Figure 11). The proportions x_1 and x_3 account for uninfected individuals, and x_2 and x_4 are compartments with prepatent infections. y_1, y_2 and y_3, represent proportions of humans with blood-stage infections. The model predicts the proportion of human population at each age in each of the compartments. It is defined by a set of linked difference equations that specify the change in each of these proportions from one time point to the next. Let Δ be the change in proportion from one time point to the next one, i.e. $\Delta x_1 = x_1(t+1) - x_1(t)$, then the equations are defined as below:

$\Delta x_1 = \delta + y_2 R_1 (b) - (b + \delta) x_1$

$\Delta x_2 = b x_1 - (1 - \delta) N + b(t - N) x_1 (t - N) - \delta x_2$

$\Delta x_3 = y_3 R_2 (b) - (b + \delta) x_3$

$\Delta x_4 = h x_3 - (1 - \delta) N + h(t - N) x_3 (t - N) - \delta x_4$

$\Delta y_1 = (1 - \delta) N + b(t - N) x_1 (t - N) - (z_1 + \delta) y_1$

$\Delta y_2 = z_1 y_1 - (z_2 + R_1 (b) + \delta) y_2$

$\Delta y_3 = z_2 y_2 - (1 - \delta) N + b(t - N) x_3 (t - N) - (R_2 (b) + \delta) y_3$

The meanings of the additional symbols are given in Table 4. The time points to which the proportions and the force of infection (b) refer to, are only indicated in the above equations when they differ from t. b is the probability per unit time, that a given susceptible individual becomes infected. Here it is defined as a function of C.

In order to account for seasonal variation, C is defined as the number of potentially infective contacts induced by the mosquito population per infectious person per day. The Garki model describes transitions among seven categories of hosts distinguished by their infection and immunological status (Figure 11). The proportions x_1 and x_3 account for uninfected individuals, and x_2 and x_4 are compartments with prepatent infections. y_1, y_2 and y_3, represent proportions of humans with blood-stage infections. The model predicts the proportion of human population at each age in each of the compartments. It is defined by a set of linked difference equations that specify the change in each of these proportions from one time point to the next. Let Δ be the change in proportion from one time point to the next one, i.e. $\Delta x_1 = x_1(t+1) - x_1(t)$, then the equations are defined as below:

$\Delta x_1 = \delta + y_2 R_1 (b) - (b + \delta) x_1$

$\Delta x_2 = b x_1 - (1 - \delta) N + b(t - N) x_1 (t - N) - \delta x_2$

$\Delta x_3 = y_3 R_2 (b) - (b + \delta) x_3$

$\Delta x_4 = h x_3 - (1 - \delta) N + h(t - N) x_3 (t - N) - \delta x_4$

$\Delta y_1 = (1 - \delta) N + b(t - N) x_1 (t - N) - (z_1 + \delta) y_1$

$\Delta y_2 = z_1 y_1 - (z_2 + R_1 (b) + \delta) y_2$

$\Delta y_3 = z_2 y_2 - (1 - \delta) N + b(t - N) x_3 (t - N) - (R_2 (b) + \delta) y_3$

The meanings of the additional symbols are given in Table 4. The time points to which the proportions and the force of infection (b) refer to, are only indicated in the above equations when they differ from t. b is the probability per unit time, that a given susceptible individual becomes infected. Here it is defined as a function of C.

In order to account for seasonal variation, C is defined as the number of potentially infective contacts induced by the mosquito population per infectious person per day. The Garki model describes transitions among seven categories of hosts distinguished by their infection and immunological status (Figure 11). The proportions x_1 and x_3 account for uninfected individuals, and x_2 and x_4 are compartments with prepatent infections. y_1, y_2 and y_3, represent proportions of humans with blood-stage infections. The model predicts the proportion of human population at each age in each of the compartments. It is defined by a set of linked difference equations that specify the change in each of these proportions from one time point to the next. Let Δ be the change in proportion from one time point to the next one, i.e. $\Delta x_1 = x_1(t+1) - x_1(t)$, then the equations are defined as below:

$\Delta x_1 = \delta + y_2 R_1 (b) - (b + \delta) x_1$

$\Delta x_2 = b x_1 - (1 - \delta) N + b(t - N) x_1 (t - N) - \delta x_2$

$\Delta x_3 = y_3 R_2 (b) - (b + \delta) x_3$

$\Delta x_4 = h x_3 - (1 - \delta) N + h(t - N) x_3 (t - N) - \delta x_4$

$\Delta y_1 = (1 - \delta) N + b(t - N) x_1 (t - N) - (z_1 + \delta) y_1$

$\Delta y_2 = z_1 y_1 - (z_2 + R_1 (b) + \delta) y_2$

$\Delta y_3 = z_2 y_2 - (1 - \delta) N + b(t - N) x_3 (t - N) - (R_2 (b) + \delta) y_3$

The meanings of the additional symbols are given in Table 4. The time points to which the proportions and the force of infection (b) refer to, are only indicated in the above equations when they differ from t. b is the probability per unit time, that a given susceptible individual becomes infected. Here it is defined as a function of C.
The Garki model was developed to make predictions of the age-specific prevalence in humans as a function of C. We reversed the calculations and estimated E from the observed prevalence data, by using the golden section search routine (Press et al. 1988) to identify the E which fits better to the observed prevalence data. In particular starting with an arbitrary value of E [and for the given C (at the survey location)] we estimated the age-dependent prevalence curve $z(t)$ via simulating the model with arbitrary starting values of x_1 to x_4 and y_1 to y_3, until equilibrium was reached. The golden search routine searches for values of E which minimize the deviance goodness of fit (of the binomial likelihood) between the observed prevalence and the estimated $z(t)$ by the Garki model. We run the simulation with a time interval of 5 days. $C(t)$ varies seasonal, depending on the estimated seasonality map (Table 2). The effect of season of birth was accounted for by assuming uniformly random birthdates throughout the year. The starting values we have chosen are shown in Table 4.

Although E is the product of the estimated vectorial capacity C and the predicted proportion infectious y_1 and so could be considered as an estimate of the EIR. However prevalence in the Garki model shows saturation at moderate to high EIR. The value of E that we obtain is an estimate of the lowest EIR that is consistent with the observed prevalence data. The estimates of C that we obtain are biased in the same way, so we do not consider either C or E to be equivalent to the vectorial capacity or EIR as measured entomologically.

Spatial statistical model
Let Y_j denote the logarithm of E at location S_j, $j = 1 \ldots m$. We assumed that Y_j is normally distributed and introduce spatial dependency between two measures Y_j and Y_k by defining a spatial exponential covariance

$$\text{cov}(Y_j, Y_k) = \sigma^2 \exp\left(-\frac{d_{jk}}{\rho}\right)$$

for $j \neq k$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>Human birth and death rates</td>
<td>36.5 per 100 years</td>
</tr>
<tr>
<td>x_1</td>
<td>Rate at which non-immunes move into the non-infective category</td>
<td>0.002 per day</td>
</tr>
<tr>
<td>x_2</td>
<td>Rate at which non-immunes recovering from infection move into the immune category</td>
<td>0.00019 per day</td>
</tr>
<tr>
<td>b</td>
<td>Force of infection (rate of infection of susceptibles per day)</td>
<td>To be estimated</td>
</tr>
<tr>
<td>N</td>
<td>Duration of pre-patent period</td>
<td>15 days</td>
</tr>
<tr>
<td>r_1</td>
<td>Recovery rate for individual clones (non-immune)</td>
<td>0.0023 per day</td>
</tr>
<tr>
<td>r_2</td>
<td>Recovery rate for individual clones (immune)</td>
<td>$10r_1$</td>
</tr>
<tr>
<td>$R_1(b)$</td>
<td>Recovery rate from infection in non-immunes y_2 (as a function of b)</td>
<td>To be estimated</td>
</tr>
<tr>
<td>$R_2(b)$</td>
<td>Recovery rate from infection in immunes y_3 (as a function of b)</td>
<td>To be estimated</td>
</tr>
<tr>
<td>g</td>
<td>Maximum value of force of infection</td>
<td>0.097 per 5 days</td>
</tr>
<tr>
<td>q_1</td>
<td>Detectability of parasites in infectives (y_1)</td>
<td>1</td>
</tr>
<tr>
<td>q_2</td>
<td>Detectability of parasites in non-immunes (y_2)</td>
<td>1</td>
</tr>
<tr>
<td>q_3</td>
<td>Detectability of parasites in immunes (y_3)</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Figure 11 States and transitions in the Garki model.
d_{jk} is the Euclidean distance that separates Y_j and Y_k, σ^2 quantifies the amount of spatially structured variation and ρ the spatial dependency. A parameter τ^2 is introduced to measure non-spatial variation at the origin and to add extra variability to those values with imprecise estimates from the Garki model. The variance in Y_j is then given by $\text{var}(Y_j) = \sigma^2 + \tau^2 w_j$, where w_j is a weight, formed by the reciprocal of the variance of the log-E estimate at location s_j from the Garki model. The mean of Y_j is modelled via a parametric function $\mu(x_j, \beta)$ of the covariates x_j and a parameter vector β.

The model for $Y = (Y_1, \ldots, Y_m)^T$ is written in matrix notation as

$$Y \sim N(\mu(X, \beta), \sigma^2 R(\rho) + \tau^2 W).$$

and W is the weight matrix with elements $W_{ij} = 1/w_i$, and $W_{ij} = 0$ for $j \neq k$. The specification above holds if all m locations are distinct. In case of $n > m$ observations, Y_1, \ldots, Y_n at m distinct locations, an $m \times n$ incidence matrix Z is formed with $Z_{ji} = 1$ if observation i is observed at location j and $Z_{ji} = 0$ otherwise. Then

$$Y \sim N(\mu(X, \beta), \sigma^2 Z^T R(\rho) Z + \tau^2 Z^T W Z).$$

The following prior distributions are adopted for the parameters involved in the model:

$$\beta \sim N(0, \beta_0 I), \quad \sigma^2 \sim \text{IG}(a_{\sigma^2}, b_{\sigma^2}), \quad \tau^2 \sim \text{IG}(a_{\tau^2}, b_{\tau^2}) \quad \text{and} \quad \rho \sim G(a_\rho, b_\rho).$$

$G()$ indicates the gamma and $\text{IG}()$ the inverse-gamma distribution. The hyperpriors are fixed to $b_\beta = 100, a_{\sigma^2} = 2.01, b_{\sigma^2} = b_{\rho} = 1.01$ and $a_\rho = b_\rho = 0.01$. This leads to a prior mean of one for all the covariance parameters and a large variance of 100.

Parameters are estimated using Markov chain Monte Carlo (MCMC) (Gelfand & Smith 1990). The joint posterior distribution of the parameters is simulated using Gibbs sampling, what requires to generate random numbers from the conditional distribution of the parameters individually. For $\mu(X, \beta)$ linear, the conditional distribution of β is normal and easy to sample from. The conditional distribution of the covariance parameters σ^2, τ^2 and ρ, are identified to have no standard forms and are sampled using a random-walk Metropolis–Hastings algorithm having a log-Gaussian proposal density with mean equals the estimate from the previous iteration and variance iteratively altered to reach an acceptance rate of 0.4.

The log-E can be predicted at new locations S_{01}, \ldots, S_{0l} once the spatial correlation between locations is estimated and the environmental covariates X_{new} at the new locations are known. The algorithm for Bayesian kriging iteratively draws independent values from the predictive distribution. At iteration r, the algorithm starts by drawing values from the joint posterior distribution of σ^2, τ^2 and ρ, which is given empirically as the output of the Gibbs sampler described above. The sampled values are used to form the covariance matrix

$$\Sigma_r = \sigma^2 R(\rho^r) + \tau^2 W.$$

with d_{jk} the Euclidean distance between location s_j and location s_k. There are three matrices formed this way. Σ_{old} is build by including only the old locations $s_1, ..., s_m$, Σ_{new} takes only new locations $S_{01}, ..., S_{0l}$ and $\Sigma_{\text{old-new}}$ describes covariances between old and new locations. That is, the $m \times l$ matrix $(\Sigma_{\text{old-new}})_{jk}$ includes locations $s_j, ..., s_m$ for j and locations $S_{01}, ..., S_{0l}$ for k. For new locations, the weights in the diagonal of W are set to one.

Subsequently, the parameter β^r is drawn from its posterior distribution to form the vector $\mu(X_{\text{new}}, \beta^r)$. Finally, a single vector from the predictive distribution of Y_0 is drawn from a multivariate normal with mean

$$\mu(X_{\text{new}}, \beta^r) + \Sigma_{\text{old-new}}(\Sigma_{\text{old-old}})^{-1}(Y - \mu(X_{\text{old}}, \beta^r))$$

and variance

$$\Sigma_{\text{new}} - \Sigma_{\text{old-new}} \Sigma_{\text{old-old}}^{-1} \Sigma_{\text{old-new}}.$$

The map with predicted log-E is back-transformed to age-related prevalence by applying the relations estimated by the Garki model. The back-transformation considers the location-specific season-length.
Cartographie de la transmission de la malaria en Afrique de l’ouest et centrale

Nous avons produit des cartes de la transmission de la malaria à *Plasmodium falciparum* en Afrique de l’ouest et centrale en utilisant la base de données MARA (Mapping malaria risk in Africa) qui contient toutes les études de prévalence de la malaria qui ont pu être géo-localisées dans la région. Les 1846 études sur la malaria que nous avons analysées ont été menées durant différentes saisons et ont été rapportées en fonction de différents groupes d’âge de la population humaine. Afin de permettre la comparaison entre celles-ci, nous avons utilisé le modèle de transmission de la malaria de Garki pour convertir les données de prévalence de la malaria dans chacune des 976 locations échantillonnées, en une seule estimation E de l’intensité de transmission, en utilisant le modèle saisonnier basé sur l’Index Normalisé de la Différence de Végétation, la température et les données de pluviométrie. Nous avons appliqué à E le modèle géostatistique bayésien en utilisant des variables supplémentaires et avons appliqué le modèle kriging bayésien pour obtenir de cartes souples de E avec des prévalences âge-spécifiques. Le résultat obtenu est la première cartographie empirique détaillée des variations dans l’intensité de la transmission de la malaria incluant l’Afrique centrale. Il a été validé par des opinions d’experts et en général il confirme les profils connus de la transmission de la malaria, procurant des données de base à partir desquelles pourront être évaluées les interventions telles que celles des programmes aux moustiquaires imprégnées d’insecticide ou les études sur les tendances de résistance aux médicaments. Il y a des variations géographiques considérables dans la précision des estimations sur modèle et dans certaines parties de l’Afrique de l’ouest, les prédictions diffèrent substantiellement de celles provenant d’autres cartes de risque. Les incertitudes conséquentes indiquent des zones pour lesquelles des données d’études supplémentaires sont plus urgentement nécessaires. Les cartes de risque de la malaria, basées sur la compilation de données d’études hétérogènes sont très sensibles à la méthodologie d’analyse.

mots clés taux d’inoculation entomologique, kriging, malaria, chaîne Markov Monte Carlo, prévalence du parasite, capacité vectorielle

Mapeando la transmisión de malaria en África del Este y Central

Hemos producido mapas con la transmisión de malaria por *Plasmodium falciparum* en África del Este y Central, utilizando la base de datos MARA (Mapping malaria risk in Africa - Mapeando el Riesgo de Malaria en África), que contiene todos aquellos estudios de prevalencia de malaria en estas regiones que pudieron ser geoposicionados. Los 1846 estudios de malaria analizados fueron realizados durante diferentes estaciones y reportados utilizando diferentes estratificaciones por edad en las poblaciones humanas. Con el fin de poder compararlos, se utilizó el modelo de transmisión de malaria Garki para convertir los datos de prevalencia de cada una de las 976 localidades a un único estimativo de intensidad de transmisión E, utilizando un modelo de estacionalidad basado en la diferencia normalizada de los índices de vegetación (NDVI), los datos de temperatura y precipitación. Utilizando variables ambientales, ajustamos un modelo geostatístico Bayesiano a E y aplicamos un kriging Bayesiano para obtener mapas suavizados de E y por lo tanto de prevalencia específica por edad. El resultado es el primer mapa empírico detallado de variaciones en la intensidad de transmisión de malaria que incluye África Central. Ha sido validado por opiniones expertas y en general confirma patrones conocidos de transmisión de malaria, aportando así una línea de base sobre la cual pueden evaluarse intervenciones tales como programas de redes mosquiteras impregnadas o farmacovigilancia. Existe una variación geográfica considerable en la precisión de los estimadores del modelo y en algunas partes de África del Este las predicciones difieren sustancialmente de aquellas presentes en otros mapas de riesgo. Las incertidumbres resultantes indican zonas en las que se requiere con mayor urgencia la obtención datos adicionales. Los mapas de riesgo de malaria basados en recopilaciones de datos hétérogènes son altamente sensibles a la metodología analítica.

palabras clave tasa entomológica de inoculación, kriging, malaria, cadena de Markov, Monte Carlo, prevalencia parasitológica, capacidad vectorial