Focus

References

Distribution of African Malaria Mosquitoes Belonging to the Anopheles gambiae Complex

M. Coetzee, M. Craig and D. le Sueur

The distribution of malaria vector mosquitoes, especially those belonging to species complexes that contain non-vector species, is important for strategic planning of malaria control programmes. Geographical information systems have allowed researchers to visualize distribution data on maps together with environmental parameters, such as rainfall and temperature. Here, Maureen Coetzee, Marlies Craig and David le Sueur review our current knowledge on the distribution of the members of the Anopheles gambiae complex.

The Anopheles gambiae Giles complex comprises six named species, one unnamed species and several incipient species. It includes two of the most effective vectors of malaria parasites in Africa. In dealing with the distribution of this important group of insects, it is appropriate to consider the history of the complex, the methods of identification and their implications for research and control operations.

History

Before 1962, An. gambiae was considered to be a single, biologically variable species. However, in the early literature, there were many reports of variation in the larval habitats and adult female resting behaviour and feeding preferences. This caused some concern when residual insecticide spraying of houses was adopted as the routine method for malaria control. First, the irritating properties of DDT caused avoidance behaviour in adults, reducing the effectiveness of the control programmes in West Africa. Second, large numbers of An. gambiae larvae could still be collected in areas where malaria transmission had effectively been controlled, although outdoor-resting adults were shown to have fed on cattle. This was interpreted at the time as being selection for behavioural resistance within a single species. The reasons for these apparent changes in behaviour were unknown and it was feared that the outdoor populations could return to their previous human-biting, indoor-resting ways.

The first real evidence for the specific distinctiveness of the saltwater-breeding members of the group was presented in the mid-1940s, although this was largely ignored at the time. Hybrid male sterility between two freshwater-breeding populations was reported in the 1950s and early 1960s, but was not considered to be evidence of interspecific differences between the two. However, by 1964, five species were recognized, with Paterson presenting evidence that the three freshwater-breeding species did not mate in nature. Evidence for a new sixth species from Uganda was presented by Davidson and Hunt. The six species were formally assigned the following scientific names: species A: An. gambiae; species B: An. arabiensis; species C: An. quadrimaculatus; species D: An. funestus; East African salt-water breeder: An. merus; and West African salt-water breeder: An. melas. The latest addition to the complex, reported in 1998, is known as An. quadrimaculatus species B from Ethiopia, and is yet to be named. Debate still surrounds the issue of the specific status of the West African incipient species of An. gambiae, although it is becoming increasingly evident that they are, in fact, distinct biological species.

Maureen Coetzee is in the Medical Entomology Section, Department of Clinical Microbiology and Infectious Diseases, School of Pathology of the South African Institute for Medical Research and the University of the Witwatersrand, PO Box 1038, Johannesburg 2000, South Africa. Marlies Craig and David le Sueur are at the National Malaria Research Programme, South African Medical Research Council, PO Box 17120, Congella 4013, South Africa. Tel: +27 11 489 9391. Fax: +27 11 489 9399. E-mail: entosafr@global.co.za or maureenc@mailto.saimr.wits.ac.za

Species identification methods and relevance to control programmes

Species complexes containing morphologically cryptic species that vary in their behaviour and vectorial capacity present a very real problem to malaria control programme managers. In large areas of Africa, *An. gambiae* and *An. arabiensis* occur in sympatry. Because both are good vectors of malaria parasites, it might seem unnecessary to carry out expensive identification procedures when the control methods to be applied are probably going to be the same. However, assessing the impact of control measures can only be effective if the abundance and proportion of the various species are determined both before and after implementation of the control programme. It is when control measures fail that the reasons can be found in correct identification; for example, the Garki project9, and insecticide resistance in *An. arabiensis* in Zimbabwe10. Furthermore, the marked exophily of *An. arabiensis* poses a very real

Box 1. Countries and Islands Represented in the *Anopheles gambiae* Database


Visit the website of the Department of Medical Entomology, South African Institute for Medical Research/University of the Witwatersrand for more information or access to the database and bibliography: http://www.wits.ac.za/fac/med/entomology/medento.htm

Fig. 1. Collection sites where the six named species of the *Anopheles gambiae* complex have been found (closed symbols), against mean annual rainfall. Open circles indicate collection sites where the species were not recorded, although this does not mean that they are absent from these sites (see text). *An. gambiae*, n = 542; *An. arabiensis*, n = 479; *An. quadriannulatus*, n = 93; *An. bwambae*, n = 1; *An. melas*, n = 65; *An. merus*, n = 55. ‘sp.’ after *An. gambiae* and *An. quadriannulatus* indicates that these taxa include more than one species.
Ethiopia. The fact that Ethiopian trolling a species that does not transmit malaria fication so that scarce resources are not wasted on con-

lations must be accompanied by accurate species identi-

fied might not be so, and further studies on correctly identi-

the behaviour and vector capacity are also the same. This African namesake has led researchers into assuming that using various methods. These include chromosomal identifications of each species have been carried out identification of the species under study.

bution, feeding preferences and response to insecticide most recently, DNA studies using PCR16.

mally outdoor-resting, non-malaria vector species occurs, monitoring of 'An. gambiae' popula-

lations must be accompanied by accurate species identi-

fication so that scarce resources are not wasted on con-

trolling a species that does not transmit malaria parasites. The fact that Ethiopian An. quadrimulatus sp. B has been regarded as the same species as its southern African namesake has led researchers into assuming that the behaviour and vector capacity are also the same. This might not be so, and further studies on correctly identi-

fied An. quadrimulatus sp. B in Ethiopia are needed.

Research studies on host-seeking behaviour, distri-

bution, feeding preferences and response to insecticide impregnated bednets cannot be evaluated without identification of the species under study. Since the recognition of the complex in 1962, precise identifications of each species have been carried out using various methods. These include chromosomal banding arrangements12, isoenzyme electrophoresis13, crosstiming techniques14, salinity tolerance tests15 and, most recently, DNA studies using PCR16.

It is obvious from the above that a working knowledge of where malaria vector species occur is essential for the malaria control programme manager. As a result, distri-

butional and biological data have for many years been collected by entomologists and malarologists through-

out Africa. The aim of the present work was to pull to-

tgether all these records into a single database, produce distributional maps of the members of the An. gambia complex, and provide individual countries with a source of reference material for work carried out in their area.

Data collection and distribution

The collection of distributional data was initiated by the late George Davidson of the London School of Hygiene and Tropical Medicine, UK, who spent much of his retirement collecting and collating data for the distribution maps. Distributional records are based solely on iden-

tified samples, and come from scientific publications, reports of the Ross Institute of the London School of Hygiene and Tropical Medicine and unpublished records from recognized research institu-

tions that carry out species identi-

fications. The computer programs used were dBASE III Plus and Quattro Pro for the databases and MapInfo for the production of the maps. The database used to com-

pile the maps includes the follow-

ing categories: country, place name, map coordinates, species, method of collection, date of col-

lection, method of identifi-cation, number of specimens identified and the references from which the data were obtained.

Members of the An. gambia complex have been reported from most countries of Africa and its adjacent islands, in-

cluding Madagascar, as well as Saudi Arabia and Yemen (Box 1). The database has 2537 records, at 1231 localities, from 215 sources, dating from 1944 to the present. It is being updated continuously, as new dis-

tributional records appear in the literature. Figure 1 shows the total distribution of each species for the whole of Africa overlaid on mean annual rainfall for the continent. These computerized maps are based on updates of the data produced by Davidson and Lane (unpublished) and presented in Ref. 1.

A glance at the maps produced here will reveal the areas where the most work has been done. Those parts of the maps that are blank do not necessarily indicate that there are no mosquitoes of the An. gambia complex present, but only that no species identifications have been published from these areas. The reader is cau-

tioned that some distributional points might be inaccu-

rate because of incorrect identifications17 or incorrect lo-

cality data in the original publications. Indeed, original map coordinates placed some records in the wrong country, or in the ocean. In addition, at least one record of An. gambia in southern Africa is known to be the result of laboratory contamination17.

The database has several other limitations. Over the past 35 years many entomologists and malarologists have studied various aspects of the An. gambia complex throughout Africa. Obviously, each study was carried out independently, using different collection and identification techniques, and without reference to other similar studies. Therefore, the database cannot be used to extract behavioural data, for example, on a wide geographical scale. Some studies included large sam-

ples of mosquitoes from well-defined areas, enabling conclusions to be drawn on the relative abundance of the species present. Other data points, however, are the result of a single specimen being identified and no conclusions can be reached on the presence or absence of other members of the group at these localities. As a result, we have limited our use of the database here to reflect only point data and to produce overall distributional maps for the individual species (Fig. 1).

Fig. 2. The proportion of total collection sites (n = 815) in which Anopheles gambiae (open bar) and An. arabiensis (closed bar) were found, plotted against total annual rainfall. The two end categories represent pooled data because there were too few sites in each for further sub-

division to be meaningful. Sites for which no rainfall data were available have been excluded.
Recently, a model has been designed to predict the species ranges and relative abundance of An. gambiae and An. arabiensis using rainfall and temperature data. The model is based on a relatively small selection of mosquito distribution data, which might account for the difference between the predicted ranges and those produced by Davidson and Lane (unpublished) and here. It should be possible, however, with careful extraction of certain records from the current database, to improve such models for their predictive value.

Clearly, the distribution of An. arabiensis (Fig. 1) is concentrated in the lower rainfall zones, which represents the drier savannah areas. This is in keeping with the known habitat preferences of this species, which are usually associated with a history of extensive land clearance (e.g. in Benin City, Nigeria), although this is not always the case. The occurrence of An. quarantinulata in Ethiopia at localities with mean annual rainfall figures of >1000 mm (Fig. 1) is in sharp contrast with the southern African data points, where annual rainfall is <700 mm. This anomaly is explained by the discovery in Ethiopia of a previously undescribed member of the An. arabiensis complex, with the same polytene chromosome arrangements as An. quarantinulata. It is unknown whether the southern African An. quarantinulata also occurs in Ethiopia.

The incipient species or chromosomal forms of An. gambiae and An. arabiensis in West Africa have not been differentiated in the database because of the debate still surrounding their specific status. Once this problem is resolved, the database will be changed to reflect the distribution of the various species currently within the nominal taxa.

Conclusion

If all the species of the An. gambiae complex exhibited identical behavioural characteristics and had the same ability to transmit malaria parasites to humans, then distributional data of the nominal species and those hidden within the taxa (e.g. West African incipient species of An. gambiae) would not be important. However, as mentioned above, this is not the case, and the species range from excellent vectors of malaria to those not involved in transmission at all. Distribution records thus provide valuable data on where the species occur, and can be used by control programme managers in the planning of strategies to combat malaria in their areas.

It is obvious from the maps presented here that large areas of Africa have both the distribution of the vectors and on the incidence and prevalence of malaria in the human populations.

Those involved in malaria control programmes are encouraged to visit the website (Box 1) containing the database and bibliographic information. From specific countries or regions will gladly be made available on request. The database will continue to be updated periodically as new publications come to hand.

Acknowledgements

The database covers more than 36 years of work by many entomologists in Africa. Our sincere thanks go to: more than 160 African researchers who either sent material to the Ross Institute in London, the South African Institute for Medical Research in Johannesburg or kindly donated reprints of their published works; Charles Ravousioche and Pierre Carnevale of the World Health Organization for their help in tracking down publications not available in southern Africa; Ron Page of the London School of Hygiene and Tropical Medicine for help in the initial stages of computerizing the distribution data and setting up the database; and Richard Hurt of MAM, Johannesburg, for comments on the manuscript. This publication is a product of the international Mapping Malaria Risk in Africa (MARA/ARMA) collaboration. Financial support was obtained from IDRC, WHO/Afro and the Witwatersrand University Medical Faculty Research Endowment Fund.

References